Second order di erence equations for certain families of ‘discrete’ polynomials
نویسنده
چکیده
In this paper we will consider two algorithms which allow us to obtain second order linear di erence equations for certain families of polynomials. The corresponding algorithms can be implemented in any computer algebra system in order to obtain explicit expressions of the coe cients of the di erence equations. c © 1998 Elsevier Science B.V. All rights reserved. AMS classi cation: 33C45; 42C05
منابع مشابه
Transition equations for isotropic flag manifolds
In analogy with transition equations for type Schubert polynomials given by Lascou and Schutzenberger s 14 , we give recursive formulas for computing representatives of the Schubert classes for the isotropic ag manifolds. These representatives are e actly the Schubert polynomials found in 2 . This new approach to nding Schubert polynomials is very closely related to the geometry of the ag manif...
متن کاملFinite Volume Methods for Convection Diffusion Problems
Introduction In this paper we consider cell centered nite di erence approximations for second order convection di usion equations of divergence type Our goal is to construct nite di erence methods of second order of approximation that satisfy the discrete maximum principle The error estimates are in the discrete Sobolev spaces associated with the considered boundary value problem Approximation ...
متن کاملDiscrete Galerkin Method for Higher Even-Order Integro-Differential Equations with Variable Coefficients
This paper presents discrete Galerkin method for obtaining the numerical solution of higher even-order integro-differential equations with variable coefficients. We use the generalized Jacobi polynomials with indexes corresponding to the number of homogeneous initial conditions as natural basis functions for the approximate solution. Numerical results are presented to demonstrate the effectiven...
متن کاملA spectral method based on Hahn polynomials for solving weakly singular fractional order integro-differential equations
In this paper, we consider the discrete Hahn polynomials and investigate their application for numerical solutions of the fractional order integro-differential equations with weakly singular kernel .This paper presented the operational matrix of the fractional integration of Hahn polynomials for the first time. The main advantage of approximating a continuous function by Hahn polynomials is tha...
متن کاملSecond order differential operators having several families of orthogonal matrix polynomials as eigenfunctions
The aim of this paper is to bring into the picture a new phenomenon in the theory of orthogonal matrix polynomials satisfying second order differential equations. The last few years have witnessed some examples of a (fixed) family of orthogonal matrix polynomials whose elements are common eigenfunctions of several linearly independent second order differential operators. We show that the dual s...
متن کامل